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Because of the large number and difficult separation of
conformers of saturated AnX2n+2 chains longer thann ) 4,1,2

measurements on an individual conformer in solution are rare.
Chain conformation may affect its electronic structure, asσ bond
delocalization is sensitive3-5 to perivalent6 interactions, e.g., in
polysilanes.7 We compare the temperature-dependent photo-
physics of a permethylated hexasilane (1) constrained to the
all-anti form by racking on a transparent [2]staffane “Tinker-
toy” 8 rod9,10with that of the free chain conformer mixture, Si6-
Me14 (2). Both show dual fluorescence, assigned to excited
state bond-stretch isomerism.
The racked hexasilane111 (Figure 1),12 obtained from

Cl(SiMe2)6Cl13 and [2]staffane-3,3′-dithiol10 (Scheme 1, cy-
clization yield 24%), has an unstrained fully stretched silicon
chain [9.79 Å from Si(1) to Si(6)]. The Si-Si bond lengths
(2.345-2.355 Å), SiSiSi valence (110.8-113.9°), and SiSiSiSi
dihedral angles (162.5, 178.0, 177.4°) meet expectations for the
all-anti form.5 MM214 calculations yielded only this low-energy
conformation for1 but many conformations for2.

Comparison of the photophysics of1 (Figure 2) and2 (Figure
3) in cyclopentane/isopentane (3/7)15 solution is instructive: (i)
Below∼150 K, the absorption, fluorescence, and fluorescence
excitation spectra of2 are almost identical with those of1.16
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Figure 1. ORTEP plot of1 in the solid state. The ellipsoids are plotted
at the 30% probability level.

Figure 2. Photophysics of1 in cyclopentane/isopentane (3/7). Top:
normalized spectral shapes of absorption (full line) and excitation
(dashed line) at 298 K (fat line) and 77 K (thin line), and fluorescence
at 134 (a), 110 (b), 56 (c), and 37 (d) K. The arrow indicates absorption
due to the sulfide chromophores.16 Center: ν̃max

FL . Bottom: quantum
yield as a function of temperature for total fluorescence (0), higher-
energy fluorescence (b), and lower-energy fluorescence (2).
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Absorption and excitation spectra for each species agree exactly
and are nearly temperature independent. Above∼150 K, all
this is still true for1 and the excitation spectrum of2 but not
for its absorption. The oscillator strength17 of the first transition
is temperature independent for1 (0.49 and 0.48 at 298 and 77
K, respectively) but not for2 (0.35 and 0.43, respectively). It
is concluded that below∼150 K, only the fluorescent all-anti
conformer2aaa (ν̃max

ABS ) ∼38 000 cm-1) is present in2 (in
Si4Me10, the anti form is also favored at low temperatures5).
Above, nonfluorescent18 conformers are present and absorb less
strongly in the region of the first transition but more strongly
about 7000 cm-1 higher.19

(ii) The fluorescence of1 and 2aaa weakens at higher
temperature and clearly competes with an activated nonradiative
process. This was noted in a previous study of220 and is
probably due to thermal excitation from a relaxed geometry of
a hole-pair (“zwitterionic”) S1 state21 to a geometry where S1
is of dot-dot (“covalent”) nature and makes a conical intersec-
tion with S0, of the type computed for a trisilane.22 The Stokes-
shifted emissions of2aaa and 1 show dual character: a
temperature independent higher-energy emission from2aaa**
(ν̃max

FL ) 29 600 cm-1) and 1** (ν̃max
FL ) 28 800 cm-1) is

observed up to 40 K and a temperature independent lower-
energy emission from2aaa* and 1* (both at ν̃max

FL ) 27 000
cm-1) above 100 K. Between 40 and 100 K, both partly
overlapping emissions occur andν̃max

FL has an intermediate

value. Since emissions from1 and2aaaare nearly identical,
vastly different dihedral angles cannot be responsible for the
obviously large difference in the equilibrium geometry of the
emitting and the ground state. This strengthens the proposal20

that this difference is a massive stretching of an SiSi bond, as
suggested by fluorescence polarization20 and calculations23,24

(self-trapped localized exciton25). This interpretation naturally
attributes multiple emissions to the presence of inequivalent
bonds: in2aaa** and1** one bond is stretched, whereas in
2aaa* and1*, another bond is stretched. Small differences in
ν̃max
FL between1 and 2 are assigned to steric constraints in1
imposing a larger dihedral angle at the stretched bond,24 while
the Si chain in2 can relax completely. The temperature
dependence of emission quantum yields is rationalized as due
to initial relaxation of the Franck-Condon excited state to
2aaa**, which proceeds to2aaa* irreversibly over a small
barrier in the potential energy surface (assuming the same S0

potential energy curves for stretching the two SiSi bonds,2aaa*
is 2600 cm-1 below 2aaa**). Three excited isomers may be
present since there are three distinct SiSi bonds, if two of the
emissions overlap.
Irradiation at 266 nm in fluid hexane/triethylsilane at 200 K

converts1 into the racked pentasilane26 expected from the
usual27 chain abridgement in 27% isolated yield. This indirectly
supports the proposed22,28 concerted nature of this reaction,29

since a nonconcerted 1,20-biradical intermediate would be
unlikely to perform the required SH2 substitution to release
dimethylsilylene.
In conclusion, comparison of2 with 1 allowed us to (i)

identify 2aaaboth as its only strongly fluorescent and dominant
low-temperature conformer, (ii) eliminate alternatives and
tentatively assign dual emission to excited bond-stretch isomers
that differ by the location of the excited SiSi bond, and (iii)
obtain support for concertedness in the photochemical chain
abridgement reaction of peralkylated oligosilanes. It is likely
that in other oligosilanes, too, the all-anti conformer is fluo-
rescent and responsible for the intense lowest-energy absorption,
as assumed earlier without proof.23
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Figure 3. Photophysics of2. See caption to Figure 2. Fluorescence at
128 (a), 96 (b), 46 (c), and 31 (d) K.
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