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Because of the large number and difficult separation of
conformers of saturated X,nt+2 chains longer tham = 4,12
measurements on an individual conformer in solution are rare.
Chain conformation may affect its electronic structurey &snd
delocalization is sensitive® to perivalent interactions, e.g., in
polysilanes. We compare the temperature-dependent photo-
physics of a permethylated hexasilari ¢onstrained to the
all-anti form by racking on a transparent [2]staffane “Tinker-
toy” 8 rod®10with that of the free chain conformer mixture sSi
Mei4 (2). Both show dual fluorescence, assigned to excited
state bond-stretch isomerism.

The racked hexasiland!! (Figure 1)}? obtained from
CI(SiMey)eCIt3 and [2]staffane-3,2dithioll® (Scheme 1, cy-
clization yield 24%), has an unstrained fully stretched silicon
chain [9.79 A from Si(1) to Si(6)]. The SiSi bond lengths
(2.345-2.355 A), SiSiSi valence (110-8113.9), and SiSiSiSi
dihedral angles (162.5, 178.0, 179%).fheet expectations for the
all-anti form> MM214 calculations yielded only this low-energy
conformation forl but many conformations fa.
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Figure 1. ORTEP plot ofl in the solid state. The ellipsoids are plotted
at the 30% probability level.
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Figure 2. Photophysics ofl in cyclopentane/isopentane (3/7). Top:
normalized spectral shapes of absorption (full line) and excitation
(dashed line) at 298 K (fat line) and 77 K (thin line), and fluorescence
at 134 (a), 110 (b), 56 (c), and 37 (d) K. The arrow indicates absorption
due to the sulfide chromophor&sCenter: 75 Bottom: quantum
yield as a function of temperature for total fluoresceridg figher-

energy fluorescence®), and lower-energy fluorescenca)(
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Comparison of the photophysics b{Figure 2) an® (Figure
3) in cyclopentane/isopentane (3f73olution is instructive: (i)
~150 K, the absorption, fluorescence, and fluorescence
excitation spectra o2 are almost identical with those df16

(12) Crystal data:1, monoclinic;a = 12.747(3) Ab = 8.055(2) A,c
= 19.401(1) A;5 = 90.437(8Y; space grougP2; (no. 4);Z = 2; peaic =
1.049 g cn3; 5941 independent reflections in the rangb,+k,+l were
collected at 200 K on a CAD4 Enraf-Nonius diffractometer with graphite
monochromated Mo Kradiation § = 0.71069 A); Lorenz and polarization
but no absorption correctiop(Mo) = 3.2/cm] were made; 4075 reflections
[I' > 20(1)] were included in the final full-matrix least squares refinement
of 325 parameters convergingRt= 0.052,R, = 0.037 v = 1/6%(F)], an
error of fit of 2.064, and a residual electron densitydeM.5 e/A3. The
hydrogen atoms were calculated in idealized positions and not refined.
Absolute structure parameter was not refined.
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114 1305.
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value. Since emissions frothand2aaaare nearly identical,
vastly different dihedral angles cannot be responsible for the
obviously large difference in the equilibrium geometry of the
emitting and the ground state. This strengthens the profjosal
that this difference is a massive stretching of an SiSi bond, as
suggested by fluorescence polarizatfband calculatior’s:24

40
20 ‘ V103 emt (self-trapped localized excit8?). This interpretation naturally

- o . . . . . .

E %D attributes multiple emissions to the presence of inequivalent

3?28 o | bonds: in2aaa** and1** one bond is stretched, whereas in

= By o OO 2aaa*and1*, another bond is stretched. Small differences in

” oL - betweenl and 2 are assigned to steric constraintslin

imposing a larger dihedral angle at the stretched Féndhile
%, ] the Si chain in2 can relax completely. The temperature
dependence of emission quantum yields is rationalized as due

@051 %ﬁﬁl@ i to initial relaxation of the FranckCondon excited state to

e g 2aaa**, which proceeds t®aaa* irreversibly over a small
o MMA.A’" ,,E*w @ barrier in the potential energy surface (assuming the same S
o 5 100 150 200 potential energy curves for stretching the two SiSi boRdsa*

is 2600 cn1! below 2aaa**). Three excited isomers may be
present since there are three distinct SiSi bonds, if two of the
emissions overlap.

Absorption and excitation spectra for each species agree exactly Ifradiation at 266 nm in fluid hexaneftriethylsilane at 200 K

and are nearly temperature independent. Abew&0 K, all converts1 into the racked pentasilatfeexpected from the

this is still true forl and the excitation spectrum @fbut not ~ usuat’ chain abrldgemer;t in 27% isolated yield. This indirectly

for its absorption. The oscillator strentiof the first transition ~ Supports the proposé&#® concerted nature of this reactigh,

is temperature independent f1(0.49 and 0.48 at 298 and 77 Since a nonconcerted 1,20-biradical intermediate would be

K, respectively) but not fo (0.35 and 0.43, respectively). It ~ Unlikely to perform the required {2 substitution to release

is concluded that below-150 K, only the fluorescent all-anti ~ dimethylsilylene.

conformer2aaa (7225 = ~38 000 cntl) is present in2 (in In conclusion, comparison a2 with 1 allowed us to (i)

SisMeyq, the anti form is also favored at low temperatdyes identify 2aaaboth as its only strq_ngly_flu_orescent and (_jomlnant

Above, nonfluorescetftconformers are present and absorb less 0w-temperature conformer, (i) eliminate alternatives and

strongly in the region of the first transition but more strongly tentatively assign dual emission to excited bond-stretch isomers

about 7000 cm' higher?? that differ by the location of the excited SiSi bond, and (iii)
(i) The fluorescence ofL and 2aaa weakens at higher obtain support for concertedness in the photochemical chain

temperature and clearly competes with an activated nonradiative@bridgement reaction of peralkylated oligosilanes. It is likely

process. This was noted in a previous study2&f and is that in other oligosilanes, too, the all-anti conformer is fluo-

probably due to thermal excitation from a relaxed geometry of rescent and responsible for the intense lowest-energy absorption,

a hole-pair (“zwitterionic”) $ staté! to a geometry where;S  as assumed earlier without pro6f.

is of dot—dot (“covalent”) nature and makes a conical intersec- )

tion with S, of the type computed for a trisilar?é. The Stokes- Acknowledgment. The authors are grateful to the Japan High
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Figure 3. Photophysics o2. See caption to Figure 2. Fluorescence at
128 (a), 96 (b), 46 (c), and 31 (d) K.
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